Numerical Solution Of The Shallow Water Equations

The first of its kind in the field, this title examines the use of modern, shock-capturing finite volume numerical methods, in the solution of partial differential equations associated with free-surface flows, which satisfy the shallow-water type assumption (including shallow water flows, dense gases and mixtures of materials as special samples). Starting with a general presentation of the governing equations for free-surface shallow flows and a discussion of their physical applicability, the book goes on to analyse the mathematical properties of the equations, in preparation for the presentation of the exact solution of the Riemann problem for wet and dry beds. After a general introduction to the finite volume approach, several chapters are then devoted to describing a variety of modern shock-capturing finite volume numerical methods, including Godunov methods of the upwind and centred type. Approximate Riemann solvers following various approaches are studied in detail as is their use in the Godunov approach for constructing low and high-order upwind TVD methods. Centred TVD schemes are also presented. Two chapters are then devoted to practical applications. The book finishes with an overview of potential practical applications of the methods studied, along with appropriate reference to sources of further information. Features include: * Algorithmic and practical presentation of the methods * Practical applications such as dam-break modelling and the study of bore reflection patterns in two space dimensions * Sample computer programs and accompanying numerical software (details available at www.numeritek.com) The book is suitable for teaching postgraduate students of civil, mechanical, hydraulic and environmental engineering, meteorology, oceanography, fluid mechanics and applied mathematics. Selected portions of the material may also be useful in teaching final year undergraduate students in the above disciplines. The contents will also be of interest to research scientists and engineers in academia and research and consultancy laboratories.

Rivers are complex entities. In addition to being valuable wildlife habitats, they support human activities by providing water for human usage, renewable energy and convenient transportation. Rivers may also pose threats to riverine communities, in the form of floods and other natural or man-induced hazards. Contemporary societies recognize their responsibility in ensuring the sustainable use of rivers and in preserving river’s intrinsic ecological and landscape values. This obligation is often in conflict with riverine economical exploitation and with risk management concerns. As a discipline, Fluvial Hydraulics makes a significant contribution to the development of strategies for sustainable river use by providing new modelling tools and engineering techniques based on advances in phenomenological understanding and in computational modelling. River Flow 2006 comprises the Proceedings of the third edition of the International Conference on Fluvial Hydraulics, organized under the auspices of the Fluvial Hydraulics Section of the International Association of Hydraulic Engineering and Research (IAHR). The book covers issues such as river hydrodynamics, morphodynamics and sediment transport. Other contributions describe interdisciplinary approaches and experiences, particularly regarding interfacial activities involving environmental sciences and information technologies. River Flow 2006 contains the most recent theoretical accomplishments, numerical developments, experimental investigations and field studies in Fluvial Hydraulics. It is an excellent resource for researchers, civil and environmental engineers, and practitioners in river-related disciplines. This book gathers a collection of extended papers based on presentations given during the SimHydro 2017 conference, held in Sophia Antipolis, Nice, France on June 14–16, 2017. It focuses on how to choose the right model in applied hydraulics and considers various aspects, including the modeling and simulation of fast hydraulic transients, 3D modeling, uncertainties and multiphase flows. The book explores both limitations and performance of current models and presents the latest developments in new numerical schemes, high-performance computing, multiphysics and multiscale methods, and better interaction with field or scale model data. It gathers the latest theoretical and innovative developments in the modeling field and presents some of the most advance applications on various water related topics like uncertainties, flood simulation and complex hydraulic applications. Given its breadth of coverage, it addresses the needs and interests of practitioners, stakeholders, researchers and engineers alike.

Numerical Solution of the Shallow-water Equations;Numerical Methods for Shallow-Water Flow;Springer Science & Business Media

This volume contains 27 contributions to the Forth Russian-German Advanced Research Workshop on Computational Science and High Performance Computing presented in October 2009 in Freiburg, Germany. The workshop was organized jointly by the High Performance Computing Center Stuttgart (HLRS), the Institute of Computational Technologies of the Siberian Branch of the Russian Academy of Sciences (ICT SB RAS) and the Section of Applied Mathematics of the University of Freiburg (IAM Freiburg) The contributions range from computer science, mathematics and high performance computing to applications in mechanical and aerospace engineering. They show a wealth of theoretical work and simulation experience with a potential of bringing together theoretical mathematical modelling and usage of high performance computing systems presenting the state of the art of computational technologies. A wide variety of problems are associated with the flow of shallow water, such as atmospheric flows, tides, storm surges, river and coastal flows, lake flows, tsunamis. Numerical simulation is an effective tool in solving them and a great variety of numerical methods are available. The first part of the book summarizes the basic physics of shallow-water flow needed to use numerical methods under various conditions. The second part gives an overview of possible numerical methods, together with their stability and accuracy properties as well as with an assessment of their performance under various conditions. This enables the reader to select a method for particular applications. Correct treatment of boundary conditions (often neglected) is emphasized. The major part of the book is about two-dimensional shallow-water equations but a discussion of the 3-D form is included. The book is intended for researchers and users of shallow-water models in oceanographic and meteorological institutes, hydraulic engineering and consulting. It also provides a major source of information for applied and numerical mathematicians.

This monograph presents cutting-edge research on dispersive wave modelling, and the numerical methods used to simulate the propagation and generation of long surface water waves. Including both an overview of existing dispersive models, as well as recent breakthroughs, the authors maintain an ideal balance between theory and applications. From
modelling tsunami waves to smaller scale coastal processes, this book will be an indispensable resource for those looking to be brought up-to-date in this active area of scientific research. Beginning with an introduction to various dispersive long wave models on the flat space, the authors establish a foundation on which readers can confidently approach more advanced mathematical models and numerical techniques. The first two chapters of the book cover modelling and numerical simulation over globally flat spaces, including adaptive moving grid methods along with the operator splitting approach, which was historically proposed at the Institute of Computational Technologies at Novosibirsk. Later chapters build on this to explore high-end mathematical modelling of the fluid flow over deformed and rotating spheres using the operator splitting approach. The appendices that follow further elaborate by providing valuable insight into long wave models based on the potential flow assumption, and modified intermediate weakly nonlinear weakly dispersive equations. Dispersive Shallow Water Waves will be a valuable resource for researchers studying theoretical or applied oceanography, nonlinear waves as well as those more broadly interested in free surface flow dynamics.

The performance of both iteration methods is accelerated by a technique based on smoothing. Both explicit and implicit smoothing is examined. It turns out that the unconditionally stable method is more efficient than the conditionally stable methods."

Developments in Geographic Information Technology have raised the expectations of users. A static map is no longer enough; there is now demand for a dynamic representation. Time is of great importance when operating on real world geographical phenomena, especially when these are dynamic. Researchers in the field of Temporal Geographical Information Systems (TGIS) have been developing methods of incorporating time into geographical information systems. Temporal-analysis embodiment spatial modelling, spatio-temporal modelling and spatial reasoning and data mining. Advances in Spatio-Temporal Analysis contributes to the field of spatio-temporal analysis, presenting innovative ideas and examples that reflect current progress and achievements.

The field of discontinuous Galerkin finite element methods has attracted considerable recent attention from scholars in the applied sciences and engineering. This volume brings together scholars working in this area, each representing a particular theme or direction of current research. Derived from the 2012 Barrett Lectures at the University of Tennessee, the papers reflect the state of the field today and point toward possibilities for future inquiry. The longer survey lectures, delivered by Franco Brezzi and Chi-Wang Shu, respectively, focus on theoretical aspects of discontinuous Galerkin methods for elliptic and evolution problems. Other papers apply DG methods to cases involving radiative transport equations, error estimates, and time-discrete higher order ALE functions, among other areas. Combining focused case studies with longer sections of expository discussion, this book will be an indispensable reference for researchers and students working with discontinuous Galerkin finite element methods and its applications.

Holl. Zusammenfass.

This book presents the theory and computation of open channel flows, using detailed analytical, numerical and experimental results. The fundamental equations of open channel flows are derived by means of a rigorous vertical integration of the RANS equations for turbulent flow. In turn, the hydrostatic pressure hypothesis, which forms the core of many shallow water hydraulic models, is scrutinized by analyzing its underlying assumptions. The book’s main focus is on one-dimensional models, including detailed treatments of unsteady and steady flows. The use of modern shock capturing finite difference and finite volume methods is described in detail, and the quality of solutions is carefully assessed on the basis of analytical and experimental results. The book’s unique features include: rigorous derivation of the hydrostatic-based shallow water hydraulic models. Detailed treatment of steady open channel flows, including the computation of transcritical flow profiles. General analysis of gate maneuvers as the solution of a Riemann problem. Includes modern shock capturing finite volume methods for the computation of unsteady free surface flows. Introduces readers to movable bed and sediment transport in shallow water models. Includes numerical solutions of shallow water hydraulic models for non-hydrostatic steady and unsteady free surface flows. This book is suitable for both undergraduate and graduate level students, given that the theory and numerical methods are progressively introduced starting with the basics. As supporting material, a collection of source codes written in Visual Basic and inserted as macros in Microsoft Excel® is available. The theory is implemented step-by-step in the codes, and the resulting programs are used throughout the book to produce the respective solutions.

Within this monograph a comprehensive and systematic knowledge on shallow-water hydrodynamics is presented. A two-dimensional system of shallow-water equations is analyzed, including the mathematical and mechanical backgrounds, the properties of the system and its solution. Also featured is a new mathematical simulation of shallow-water flows by compressible plane flows of a special virtual perfect gas, as well as practical algorithms such as FDM, FEM, and FVM. Some of these algorithms have been utilized in solving the system, while others have been utilized in various applied fields. An emphasis has been placed on several classes of high-performance difference schemes and boundary procedures which have found wide uses recently for solving the Euler equations of gas dynamics in aeronautical and aerospace engineering. This book is constructed so that it may serve as a handbook for practitioners. It will be of interest to scientists, designers, teachers, postgraduates and professionals in hydraulic, marine, and environmental engineering; especially those involved in the mathematical modelling of shallow-water bodies.

Flooding accounts for one-third of natural disasters worldwide and for over half the deaths which occur as a result of natural disasters. As the frequency and volume of flooding increases, as a result of climate change, there is a new urgency amongst researchers and professionals working in flood risk management. River Basin Modelling for Flood Risk Mitigation brings together thirty edited papers by leading experts who gathered for the European Union’s Advanced Study Course at the University of Birmingham, UK. The scope of the course ranged from issues concerning the protection of life, to river restoration and wetland management. A variety of topics is covered in the book including climate change, hydro-informatics, hydro-meterology, river flow forecasting systems and dam-break modelling. The approach is broad, but integrated, providing an attractive and informative package that will satisfy researchers and professionals, while offering a sound introduction to students in Engineering and Geography.

This thesis is concerned with the analysis of various methods for the numerical solution of the shallow water equations along with the stability of these methods. Most of the thesis is concerned with the background and formulation of the shallow water equations. The derivation of the basic equations will be given, in the primitive variable and vorticity divergence formulation. Also the shallow water equations will be written in spherical coordinates. Two main types of methods used in approximating differential equations of this nature will be discussed. The two schemes are finite difference method (FDM) and the finite element method (FEM). After presenting the shallow water equations in several formulations, some examples will be presented. The use of the Fourier transform to find the solution of a semidiscrete analog of the shallow water equations is also demonstrated.

This important new book sets forth a comprehensive description of various mathematical aspects of problems originating in numerical solution of hyperbolic systems of partial differential equations. The authors present the material in the context of the important mechanical applications of such systems, including the Euler equations of gas dynamics, magnetohydrodynamics (MHD), shallow water, and solid...
dynamics equations. This treatment provides, for the first time in book form, a collection of recipes for applying higher-order non-oscillatory shock-capturing schemes to MHD modelling of physical phenomena. The authors also address a number of original "nonclassical" problems, such as shock wave propagation in rods and composite materials, ionization fronts in plasma, and electromagnetic shock waves in magnets. They show that, if a small-scale, higher-order mathematical model results in oscillations of the discontinuity structure, the variety of admissible discontinuities can exhibit dispersive behavior, including some with additional boundary conditions that do not follow from the hyperbolic conservation laws. Nonclassical problems are accompanied by a multiple nonuniqueness of solutions. The authors formulate several selection rules, which in some cases easily allow a correct, physically realizable choice. This work systematizes methods for overcoming the difficulties inherent in the solution of hyperbolic systems. Its unique focus on applications, both traditional and new, makes Mathematical Aspects of Numerical Solution of Hyperbolic Systems particularly valuable not only to those interested in the development of numerical methods, but to physicists and engineers who strive to solve increasingly complicated nonlinear equations.

Mathematical Modelling in Science and Technology: The Fourth International Conference covers the proceedings of the Fourth International Conference by the same title, held at the Swiss Federal Institute of Technology, Zurich, Switzerland on August 15-17, 1983. Mathematical modeling is a powerful tool to solve many complex problems presented by scientific and technological developments. This book is organized into 20 parts encompassing 180 chapters. The first parts present the basic principles, methodology, systems theory, parameter estimation, system identification, and optimization of mathematical modeling. The succeeding parts discuss the features of stochastic and numerical modeling and simulation languages. Considerable parts deal with the application areas of mathematical modeling, such as in chemical engineering, solid and fluid mechanics, water resources, medicine, economics, transportation, and industry. The last parts tackle the application of mathematical modeling in student management and other academic cases. This book will prove useful to researchers in various science and technology fields.

Realizing the need of interaction between universities and research groups in industry, the European Consortium for Mathematics in Industry (ECMI) was founded in 1986 by mathematicians from ten European universities. Since then it has been continuously extending and now it involves about all European countries. The aims of ECMI are:

• To promote the use of mathematical models in industry.
• To educate industrial mathematicians to meet the growing demand for such experts.
• To operate on a European Scale.

Mathematics, as the language of the sciences, has always played an important role in technology, and now is applied also to a variety of problems in commerce and the environment. European industry is increasingly becoming dependent on high technology and the need for mathematical expertise in both research and development can only grow. These new demands on mathematics have stimulated academic interest in Industrial Mathematics and many mathematical groups worldwide are committed to interaction with industry as part of their research activities. ECMI was founded with the intention of offering its collective knowledge and expertise to European Industry. The experience of ECMI members is that similar technical problems are encountered by different companies in different countries. It is also true that the same mathematical expertise may often be used in differing industrial applications.

The application of the method of characteristics for the numerical solution of hyperbolic type partial differential equations will be presented. Special attention will be given to the numerical solution of the Vlasov equation, which is of fundamental importance in the study of the kinetic theory of plasmas, and to other equations pertinent to plasma physics. Examples will be presented with possible combination with fractional step methods in the case of several dimensions. The methods are quite general and can be applied to different equations of hyperbolic type in the field of mathematical physics. Examples for the application of the method of characteristics to fluid equations will be presented, for the numerical solution of the shallow water equations and for the numerical solution of the equations of the incompressible ideal magnetohydrodynamic (MHD) flows in plasmas.